Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 76
Filtrar
1.
NPJ Parkinsons Dis ; 10(1): 77, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38580641

RESUMO

Subthalamic beta band activity (13-35 Hz) is known as a real-time correlate of motor symptom severity in Parkinson's disease (PD) and is currently explored as a feedback signal for closed-loop deep brain stimulation (DBS). Here, we investigate the interaction of movement, dopaminergic medication, and deep brain stimulation on subthalamic beta activity in PD patients implanted with sensing-enabled, implantable pulse generators. We recorded subthalamic activity from seven PD patients at rest and during repetitive movements in four conditions: after withdrawal of dopaminergic medication and DBS, with medication only, with DBS only, and with simultaneous medication and DBS. Medication and DBS showed additive effects in improving motor performance. Distinct effects of each therapy were seen in subthalamic recordings, with medication primarily suppressing low beta activity (13-20 Hz) and DBS being associated with a broad decrease in beta band activity (13-35 Hz). Movement suppressed beta band activity compared to rest. This suppression was most prominent when combining medication with DBS and correlated with motor improvement within patients. We conclude that DBS and medication have distinct effects on subthalamic beta activity during both rest and movement, which might explain their additive clinical effects as well as their difference in side-effect profiles. Importantly, subthalamic beta activity significantly correlated with motor symptoms across all conditions, highlighting its validity as a feedback signal for closed-loop DBS.

2.
Artigo em Inglês | MEDLINE | ID: mdl-38641368

RESUMO

BACKGROUND: Rapid eye movement (REM) sleep behaviour disorder (RBD) is one of the most common sleep problems and represents a key prodromal marker in Parkinson's disease (PD). It remains unclear whether and how basal ganglia nuclei, structures that are directly involved in the pathology of PD, are implicated in the occurrence of RBD. METHOD: Here, in parallel with whole-night video polysomnography, we recorded local field potentials from two major basal ganglia structures, the globus pallidus internus and subthalamic nucleus, in two cohorts of patients with PD who had varied severity of RBD. Basal ganglia oscillatory patterns during RBD and REM sleep without atonia were analysed and compared with another age-matched cohort of patients with dystonia that served as controls. RESULTS: We found that beta power in both basal ganglia nuclei was specifically elevated during REM sleep without atonia in patients with PD, but not in dystonia. Basal ganglia beta power during REM sleep positively correlated with the extent of atonia loss, with beta elevation preceding the activation of chin electromyogram activities by ~200 ms. The connectivity between basal ganglia beta power and chin muscular activities during REM sleep was significantly correlated with the clinical severity of RBD in PD. CONCLUSIONS: These findings support that basal ganglia activities are associated with if not directly contribute to the occurrence of RBD in PD. Our study expands the understanding of the role basal ganglia played in RBD and may foster improved therapies for RBD by interrupting the basal ganglia-muscular communication during REM sleep in PD.

3.
Mov Disord ; 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38661451

RESUMO

BACKGROUND: It has been proposed that tics and premonitory urges in primary tic disorders (PTD), like Tourette syndrome, are a manifestation of sensorimotor noise. However, patients with tics show no obvious movement imprecision in everyday life. One reason could be that patients have strategies to compensate for noise that disrupts performance (ie, noise that is task-relevant). OBJECTIVES: Our goal was to unmask effects of elevated sensorimotor noise on the variability of voluntary movements in patients with PTD. METHODS: We tested 30 adult patients with PTD (23 male) and 30 matched controls in a reaching task designed to unmask latent noise. Subjects reached to targets whose shape allowed for variability either in movement direction or extent. This enabled us to decompose variability into task-relevant versus less task-relevant components, where the latter should be less affected by compensatory strategies than the former. In alternating blocks, the task-relevant target dimension switched, allowing us to explore the temporal dynamics with which participants adjusted movement variability to changes in task demands. RESULTS: Both groups accurately reached to targets, and adjusted movement precision based on target shape. However, when task-relevant dimensions of the target changed, patients initially produced movements that were more variable than controls, before regaining precision after several reaches. This effect persisted across repeated changes in the task-relevant dimension across the experiment, and therefore did not reflect an effect of novelty, or differences in learning. CONCLUSIONS: Our results suggest that patients with PTD generate noisier voluntary movements compared with controls, but rapidly compensate according to current task demands. © 2024 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.

4.
Front Hum Neurosci ; 18: 1320806, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38450221

RESUMO

The Deep Brain Stimulation (DBS) Think Tank XI was held on August 9-11, 2023 in Gainesville, Florida with the theme of "Pushing the Forefront of Neuromodulation". The keynote speaker was Dr. Nico Dosenbach from Washington University in St. Louis, Missouri. He presented his research recently published in Nature inn a collaboration with Dr. Evan Gordon to identify and characterize the somato-cognitive action network (SCAN), which has redefined the motor homunculus and has led to new hypotheses about the integrative networks underpinning therapeutic DBS. The DBS Think Tank was founded in 2012 and provides an open platform where clinicians, engineers, and researchers (from industry and academia) can freely discuss current and emerging DBS technologies, as well as logistical and ethical issues facing the field. The group estimated that globally more than 263,000 DBS devices have been implanted for neurological and neuropsychiatric disorders. This year's meeting was focused on advances in the following areas: cutting-edge translational neuromodulation, cutting-edge physiology, advances in neuromodulation from Europe and Asia, neuroethical dilemmas, artificial intelligence and computational modeling, time scales in DBS for mood disorders, and advances in future neuromodulation devices.

5.
Brain ; 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38195196

RESUMO

In Parkinson's disease, imbalances between "antikinetic" and "prokinetic" patterns of neuronal oscillatory activity are related to motor dysfunction. Invasive brain recordings from the motor network have suggested that medical or surgical therapy can promote a prokinetic state by inducing narrowband gamma rhythms (65-90 Hz). Excessive narrowband gamma in the motor cortex promotes dyskinesia in rodent models, but the relationship between narrowband gamma and dyskinesia in humans has not been well established. To assess this relationship, we used a sensing-enabled deep brain stimulator system, attached to both motor cortex and basal ganglia (subthalamic or pallidal) leads, paired with wearable devices that continuously tracked motor signs in the contralateral upper limbs. We recorded 984 hours of multisite field potentials in 30 hemispheres of 16 subjects with Parkinson's disease (2/16 female, mean age 57 ± 12 years) while at home on usual antiparkinsonian medications. Recordings were done two to four weeks after implantation, prior to starting therapeutic stimulation. Narrowband gamma was detected in the precentral gyrus, subthalamic nucleus, or both structures on at least one side of 92% of subjects with a clinical history of dyskinesia. Narrowband gamma was not detected in the globus pallidus. Narrowband gamma spectral power in both structures co-fluctuated similarly with contralateral wearable dyskinesia scores (mean correlation coefficient of ρ=0.48 with a range of 0.12-0.82 for cortex, ρ=0.53 with a range of 0.5-0.77 for subthalamic nucleus). Stratification analysis showed the correlations were not driven by outlier values, and narrowband gamma could distinguish "on" periods with dyskinesia from "on" periods without dyskinesia. Time lag comparisons confirmed that gamma oscillations herald dyskinesia onset without a time lag in either structure when using 2-minute epochs. A linear model incorporating the three oscillatory bands (beta, theta/alpha, and narrowband gamma) increased the predictive power of dyskinesia for several subject hemispheres. We further identified spectrally distinct oscillations in the low gamma range (40-60 Hz) in three subjects, but the relationship of low gamma oscillations to dyskinesia was variable. Our findings support the hypothesis that excessive oscillatory activity at 65-90 Hz in the motor network tracks with dyskinesia similarly across both structures, without a detectable time lag. This rhythm may serve as a promising control signal for closed-loop deep brain stimulation using either cortical or subthalamic detection.

6.
Brain Stimul ; 17(1): 125-133, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38266773

RESUMO

BACKGROUND: Deep brain stimulation (DBS) is an invasive treatment option for patients with Parkinson's disease. Recently, adaptive DBS (aDBS) systems have been developed, which adjust stimulation timing and amplitude in real-time. However, it is unknown how changes in parameters, movement states and the controllability of subthalamic beta activity affect aDBS performance. OBJECTIVE: To characterize how parameter choice, movement state and controllability interactively affect the electrophysiological and behavioral response to single threshold aDBS. METHODS: We recorded subthalamic local field potentials in 12 patients with Parkinson's disease receiving single threshold aDBS in the acute post-operative state. We investigated changes in two aDBS parameters: the onset time and the smoothing of real-time beta power. Electrophysiological patterns and motor performance were assessed while patients were at rest and during a simple motor task. We further studied the impact of controllability on aDBS performance by comparing patients with and without beta power modulation during continuous stimulation. RESULTS: Our findings reveal that changes in the onset time control the extent of beta power suppression achievable with single threshold adaptive stimulation during rest. Behavioral data indicate that only specific parameter combinations yield a beneficial effect of single threshold aDBS. During movement, action induced beta power suppression reduces the responsivity of the closed loop algorithm. We further demonstrate that controllability of beta power is a prerequisite for effective parameter dependent modulation of subthalamic beta activity. CONCLUSION: Our results highlight the interaction between single threshold aDBS parameter selection, movement state and controllability in driving subthalamic beta activity and motor performance. By this means, we identify directions for the further development of closed-loop DBS algorithms.


Assuntos
Estimulação Encefálica Profunda , Doença de Parkinson , Núcleo Subtalâmico , Humanos , Doença de Parkinson/terapia , Estimulação Encefálica Profunda/métodos , Movimento/fisiologia , Fenômenos Eletrofisiológicos
7.
Eur J Neurosci ; 59(3): 457-472, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38178558

RESUMO

Millions of people suffer from dopamine-related disorders spanning disturbances in movement, cognition and emotion. These changes are often attributed to changes in striatal dopamine function. Thus, understanding how dopamine signalling in the striatum and basal ganglia shapes human behaviour is fundamental to advancing the treatment of affected patients. Dopaminergic neurons innervate large-scale brain networks, and accordingly, many different roles for dopamine signals have been proposed, such as invigoration of movement and tracking of reward contingencies. The canonical circuit architecture of cortico-striatal loops sparks the question, of whether dopamine signals in the basal ganglia serve an overarching computational principle. Such a holistic understanding of dopamine functioning could provide new insights into symptom generation in psychiatry to neurology. Here, we review the perspective that dopamine could bidirectionally control neural population dynamics, increasing or decreasing their strength and likelihood to reoccur in the future, a process previously termed neural reinforcement. We outline how the basal ganglia pathways could drive strengthening and weakening of circuit dynamics and discuss the implication of this hypothesis on the understanding of motor signs of Parkinson's disease (PD), the most frequent dopaminergic disorder. We propose that loss of dopamine in PD may lead to a pathological brain state where repetition of neural activity leads to weakening and instability, possibly explanatory for the fact that movement in PD deteriorates with repetition. Finally, we speculate on how therapeutic interventions such as deep brain stimulation may be able to reinstate reinforcement signals and thereby improve treatment strategies for PD in the future.


Assuntos
Estimulação Encefálica Profunda , Doença de Parkinson , Humanos , Dopamina/metabolismo , Gânglios da Base , Encéfalo/metabolismo
9.
Med Image Anal ; 91: 103041, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38007978

RESUMO

Spatial normalization-the process of mapping subject brain images to an average template brain-has evolved over the last 20+ years into a reliable method that facilitates the comparison of brain imaging results across patients, centers & modalities. While overall successful, sometimes, this automatic process yields suboptimal results, especially when dealing with brains with extensive neurodegeneration and atrophy patterns, or when high accuracy in specific regions is needed. Here we introduce WarpDrive, a novel tool for manual refinements of image alignment after automated registration. We show that the tool applied in a cohort of patients with Alzheimer's disease who underwent deep brain stimulation surgery helps create more accurate representations of the data as well as meaningful models to explain patient outcomes. The tool is built to handle any type of 3D imaging data, also allowing refinements in high-resolution imaging, including histology and multiple modalities to precisely aggregate multiple data sources together.


Assuntos
Doença de Alzheimer , Processamento de Imagem Assistida por Computador , Humanos , Processamento de Imagem Assistida por Computador/métodos , Encéfalo/diagnóstico por imagem , Imageamento Tridimensional , Mapeamento Encefálico/métodos , Doença de Alzheimer/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos
10.
Res Sq ; 2023 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-37790428

RESUMO

Brain computer interfaces (BCI) provide unprecedented spatiotemporal precision that will enable significant expansion in how numerous brain disorders are treated. Decoding dynamic patient states from brain signals with machine learning is required to leverage this precision, but a standardized framework for identifying and advancing novel clinical BCI approaches does not exist. Here, we developed a platform that integrates brain signal decoding with connectomics and demonstrate its utility across 123 hours of invasively recorded brain data from 73 neurosurgical patients treated for movement disorders, depression and epilepsy. First, we introduce connectomics-informed movement decoders that generalize across cohorts with Parkinson's disease and epilepsy from the US, Europe and China. Next, we reveal network targets for emotion decoding in left prefrontal and cingulate circuits in DBS patients with major depression. Finally, we showcase opportunities to improve seizure detection in responsive neurostimulation for epilepsy. Our platform provides rapid, high-accuracy decoding for precision medicine approaches that can dynamically adapt neuromodulation therapies in response to the individual needs of patients.

11.
Nat Commun ; 14(1): 5434, 2023 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-37669927

RESUMO

Parkinson's disease (PD) is associated with excessive beta activity in the basal ganglia. Brain sensing implants aim to leverage this biomarker for demand-dependent adaptive stimulation. Sleep disturbance is among the most common non-motor symptoms in PD, but its relationship with beta activity is unknown. To investigate the clinical potential of beta activity as a biomarker for sleep quality in PD, we recorded pallidal local field potentials during polysomnography in PD patients off dopaminergic medication and compared the results to dystonia patients. PD patients exhibited sustained and elevated beta activity across wakefulness, rapid eye movement (REM), and non-REM sleep, which was correlated with sleep disturbance. Simulation of adaptive stimulation revealed that sleep-related beta activity changes remain unaccounted for by current algorithms, with potential negative outcomes in sleep quality and overall quality of life for patients.


Assuntos
Doença de Parkinson , Transtornos do Sono-Vigília , Humanos , Qualidade de Vida , Sono , Globo Pálido , Gânglios da Base
12.
Brain ; 146(11): 4456-4468, 2023 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-37450573

RESUMO

Deep brain stimulation is a neuromodulatory treatment for managing the symptoms of Parkinson's disease and other neurological and psychiatric disorders. Electrodes are chronically implanted in disease-relevant brain regions and pulsatile electrical stimulation delivery is intended to restore neurocircuit function. However, the widespread interest in the application and expansion of this clinical therapy has preceded an overarching understanding of the neurocircuit alterations invoked by deep brain stimulation. Over the years, various forms of neurophysiological evidence have emerged which demonstrate changes to brain activity across spatiotemporal resolutions; from single neuron, to local field potential, to brain-wide cortical network effects. Though fruitful, such studies have often led to debate about a singular putative mechanism. In this Update we aim to produce an integrative account of complementary instead of mutually exclusive neurophysiological effects to derive a generalizable concept of the mechanisms of deep brain stimulation. In particular, we offer a critical review of the most common historical competing theories, an updated discussion on recent literature from animal and human neurophysiological studies, and a synthesis of synaptic and network effects of deep brain stimulation across scales of observation, including micro-, meso- and macroscale circuit alterations.


Assuntos
Estimulação Encefálica Profunda , Doença de Parkinson , Animais , Humanos , Encéfalo , Estimulação Elétrica , Neurônios/fisiologia
13.
Mov Disord ; 38(6): 937-948, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37148553

RESUMO

Closed-loop adaptive deep brain stimulation (aDBS) can deliver individualized therapy at an unprecedented temporal precision for neurological disorders. This has the potential to lead to a breakthrough in neurotechnology, but the translation to clinical practice remains a significant challenge. Via bidirectional implantable brain-computer-interfaces that have become commercially available, aDBS can now sense and selectively modulate pathophysiological brain circuit activity. Pilot studies investigating different aDBS control strategies showed promising results, but the short experimental study designs have not yet supported individualized analyses of patient-specific factors in biomarker and therapeutic response dynamics. Notwithstanding the clear theoretical advantages of a patient-tailored approach, these new stimulation possibilities open a vast and mostly unexplored parameter space, leading to practical hurdles in the implementation and development of clinical trials. Therefore, a thorough understanding of the neurophysiological and neurotechnological aspects related to aDBS is crucial to develop evidence-based treatment regimens for clinical practice. Therapeutic success of aDBS will depend on the integrated development of strategies for feedback signal identification, artifact mitigation, signal processing, and control policy adjustment, for precise stimulation delivery tailored to individual patients. The present review introduces the reader to the neurophysiological foundation of aDBS for Parkinson's disease (PD) and other network disorders, explains currently available aDBS control policies, and highlights practical pitfalls and difficulties to be addressed in the upcoming years. Finally, it highlights the importance of interdisciplinary clinical neurotechnological research within and across DBS centers, toward an individualized patient-centered approach to invasive brain stimulation. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Assuntos
Estimulação Encefálica Profunda , Doença de Parkinson , Humanos , Estimulação Encefálica Profunda/métodos , Doença de Parkinson/terapia , Neurofisiologia
14.
Neurobiol Dis ; 182: 106143, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37146835

RESUMO

BACKGROUND: Sleep disturbances are highly prevalent in movement disorders, potentially due to the malfunctioning of basal ganglia structures. Pallidal deep brain stimulation (DBS) has been widely used for multiple movement disorders and been reported to improve sleep. We aimed to investigate the oscillatory pattern of pallidum during sleep and explore whether pallidal activities can be utilized to differentiate sleep stages, which could pave the way for sleep-aware adaptive DBS. METHODS: We directly recorded over 500 h of pallidal local field potentials during sleep from 39 subjects with movement disorders (20 dystonia, 8 Huntington's disease, and 11 Parkinson's disease). Pallidal spectrum and cortical-pallidal coherence were computed and compared across sleep stages. Machine learning approaches were utilized to build sleep decoders for different diseases to classify sleep stages through pallidal oscillatory features. Decoding accuracy was further associated with the spatial localization of the pallidum. RESULTS: Pallidal power spectra and cortical-pallidal coherence were significantly modulated by sleep-stage transitions in three movement disorders. Differences in sleep-related activities between diseases were identified in non-rapid eye movement (NREM) and REM sleep. Machine learning models using pallidal oscillatory features can decode sleep-wake states with over 90% accuracy. Decoding accuracies were higher in recording sites within the internus-pallidum than the external-pallidum, and can be precited using structural (P < 0.0001) and functional (P < 0.0001) whole-brain neuroimaging connectomics. CONCLUSION: Our findings revealed strong sleep-stage dependent distinctions in pallidal oscillations in multiple movement disorders. Pallidal oscillatory features were sufficient for sleep stage decoding. These data may facilitate the development of adaptive DBS systems targeting sleep problems that have broad translational prospects.


Assuntos
Estimulação Encefálica Profunda , Distonia , Distúrbios Distônicos , Doença de Parkinson , Humanos , Globo Pálido , Doença de Parkinson/complicações , Doença de Parkinson/terapia , Estimulação Encefálica Profunda/métodos , Sono
15.
Trends Neurosci ; 46(6): 472-487, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37105806

RESUMO

Deep brain stimulation (DBS) is an effective treatment and has provided unique insights into the dynamic circuit architecture of brain disorders. This Review illustrates our current understanding of the pathophysiology of movement disorders and their underlying brain circuits that are modulated with DBS. It proposes principles of pathological network synchronization patterns like beta activity (13-35 Hz) in Parkinson's disease. We describe alterations from microscale including local synaptic activity via modulation of mesoscale hypersynchronization to changes in whole-brain macroscale connectivity. Finally, an outlook on advances for clinical innovations in next-generation neurotechnology is provided: from preoperative connectomic targeting to feedback controlled closed-loop adaptive DBS as individualized network-specific brain circuit interventions.


Assuntos
Conectoma , Estimulação Encefálica Profunda , Doença de Parkinson , Humanos , Doença de Parkinson/terapia , Encéfalo
16.
Acta Physiol (Oxf) ; 238(1): e13966, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36951649

RESUMO

The global north is facing an unprecedented rise in the prevalence of neurodegenerative diseases. The increasing incidence of Parkinson's disease is being referred to as a pandemic. The reason for the enormous increase is only partly understood. Lifestyle factors are known to play a role, but they alone cannot account for the surge. One factor that-although being recognized as important-has not been explored in detail so far is the influence of circadian rhythms. Sleep and circadian rhythm disruption are known as key factors in neurodegeneration, and their occurrence during early disease stages suggests a causal role in the pathogenesis. Isolated rapid eye movement (REM) sleep behavior disorder (iRBD) has been identified as a prodromal state of α-synucleinopathies, such as Parkinson's disease, Lewy body dementia, and multiple system atrophy offering a window for insights into the early development of these diseases. Even though REM sleep is the sleep state most pronounced, driven and modulated by the circadian timing system, specific circadian abnormalities have not been described in iRBD. Novel experimental and clinical approaches exploiting the molecular circuitry underlying circadian timekeeping hold promise to disentangle some of the pathophysiologic mechanisms of α-synucleinopathies. In this review, we summarize current knowledge on sleep and circadian rhythm disruptions in α-synucleinopathies with an emphasis on molecular aspects and therapeutic potentials. These insights might contribute to our understanding of the pathogenesis of neurodegenerative diseases and may allow therapeutic interventions addressing the disturbed circadian system at the early stage of disease.


Assuntos
Doenças Neurodegenerativas , Doença de Parkinson , Transtorno do Comportamento do Sono REM , Sinucleinopatias , Humanos , Doença de Parkinson/epidemiologia , Transtorno do Comportamento do Sono REM/tratamento farmacológico , Transtorno do Comportamento do Sono REM/epidemiologia , Ritmo Circadiano , Sono
17.
NPJ Parkinsons Dis ; 9(1): 2, 2023 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-36611027

RESUMO

Pathologically increased beta power has been described as a biomarker for Parkinson's disease (PD) and related to prolonged bursts of subthalamic beta synchronization. Here, we investigate the association between subthalamic beta dynamics and motor impairment in a cohort of 106 Parkinson's patients in the ON- and OFF-medication state, using two different methods of beta burst determination. We report a frequency-specific correlation of low beta power and burst duration with motor impairment OFF dopaminergic medication. Furthermore, reduction of power and burst duration correlated significantly with symptom alleviation through dopaminergic medication. Importantly, qualitatively similar results were yielded with two different methods of beta burst definition. Our findings validate the robustness of previous results on pathological changes in subcortical oscillations both in the frequency- as well as in the time-domain in the largest cohort of PD patients to date with important implications for next-generation adaptive deep brain stimulation control algorithms.

18.
Mov Disord ; 38(4): 692-697, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36718788

RESUMO

BACKGROUND: Subthalamic nucleus (STN) beta (13 - 35 Hz) activity is a biomarker reflecting motor state in Parkinson's disease (PD). Adaptive deep brain stimulation (DBS) aims to use beta activity for therapeutic adjustments, but many aspects of beta activity in real-life situations are unknown. OBJECTIVE: The aim was to investigate Christmas-related influences on beta activity in PD. METHODS: Differences in Christmas Day to nonfestive daily averages in chronic biomarker recordings in 4 PD patients with a sensing-enabled STN DBS implant were retrospectively analyzed. Sweet-spot and whole-brain network connectomic analyses were performed. RESULTS: Beta activity was significantly reduced on Christmas Eve in all patients (4.00-9.00 p.m.: -12.30 ± 10.78%, P = 0.015). A sweet spot in the dorsolateral STN connected recording sites to motor, premotor, and supplementary motor cortices. CONCLUSIONS: We demonstrate that festive events can reduce beta biomarker activity. We conclude that circadian and holiday-related changes should be considered when tailoring adaptive DBS algorithms to patient demands. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Assuntos
Estimulação Encefálica Profunda , Córtex Motor , Doença de Parkinson , Núcleo Subtalâmico , Humanos , Doença de Parkinson/terapia , Estudos Retrospectivos , Núcleo Subtalâmico/fisiologia
19.
Exp Neurol ; 359: 114261, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36349662

RESUMO

The first commercially sensing enabled deep brain stimulation (DBS) devices for the treatment of movement disorders have recently become available. In the future, such devices could leverage machine learning based brain signal decoding strategies to individualize and adapt therapy in real-time. As multi-channel recordings become available, spatial information may provide an additional advantage for informing machine learning models. To investigate this concept, we compared decoding performances from single channels vs. spatial filtering techniques using intracerebral multitarget electrophysiology in Parkinson's disease patients undergoing DBS implantation. We investigated the feasibility of spatial filtering in invasive neurophysiology and the putative utility of combined cortical ECoG and subthalamic local field potential signals for decoding grip-force, a well-defined and continuous motor readout. We found that adding spatial information to the model can improve decoding (6% gain in decoding), but the spatial patterns and additional benefit was highly individual. Beyond decoding performance results, spatial filters and patterns can be used to obtain meaningful neurophysiological information about the brain networks involved in target behavior. Our results highlight the importance of individualized approaches for brain signal decoding, for which multielectrode recordings and spatial filtering can improve precision medicine approaches for clinical brain computer interfaces.


Assuntos
Interfaces Cérebro-Computador , Doença de Parkinson , Humanos , Movimento/fisiologia , Eletrocorticografia , Encéfalo/fisiologia , Doença de Parkinson/terapia
20.
PLoS Biol ; 20(7): e3001680, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35797414

RESUMO

Early career researchers (ECRs) are important stakeholders leading efforts to catalyze systemic change in research culture and practice. Here, we summarize the outputs from a virtual unconventional conference (unconference), which brought together 54 invited experts from 20 countries with extensive experience in ECR initiatives designed to improve the culture and practice of science. Together, we drafted 2 sets of recommendations for (1) ECRs directly involved in initiatives or activities to change research culture and practice; and (2) stakeholders who wish to support ECRs in these efforts. Importantly, these points apply to ECRs working to promote change on a systemic level, not only those improving aspects of their own work. In both sets of recommendations, we underline the importance of incentivizing and providing time and resources for systems-level science improvement activities, including ECRs in organizational decision-making processes, and working to dismantle structural barriers to participation for marginalized groups. We further highlight obstacles that ECRs face when working to promote reform, as well as proposed solutions and examples of current best practices. The abstract and recommendations for stakeholders are available in Dutch, German, Greek (abstract only), Italian, Japanese, Polish, Portuguese, Spanish, and Serbian.


Assuntos
Pesquisadores , Relatório de Pesquisa , Humanos , Poder Psicológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...